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We study theoretically the entropic elasticity of a semiflexible polymer, such as DNA, confined to two
dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition
function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer
is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications
to the interaction between a semiflexible polymer and a nematic field, and derive the nematic order parameter
and average extension of the polymer in a strong field.
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I. INTRODUCTION

Mechanical properties of biomolecules, such as their re-
sponse to an applied force, are important for understanding a
variety of biological processes ranging from cell motility to
gene regulation. Detailed mechanical studies of biopolymers
using laser tweezers, magnetic tweezers, atomic force mi-
croscopy, and other single molecule techniques have pro-
vided the necessary experimental input for formulating pre-
cise mathematical models of their elasticity. In the case of
double-stranded DNA �dsDNA� the favored theoretical
model is the worm-like-chain �WLC� model, proposed by
Kratky and Porod in 1949 �1�. Owing to the central role that
DNA plays in biology, the last decade has seen a significant
body of theoretical work on the WLC model, as well as its
modifications and extensions �2–10�. Considerable experi-
mental evidence has now accumulated that shows that the
worm-like-chain model reproduces the mechanical behavior
of dsDNA in the entropic regime quite well �2,3,11�.

The effect of confinement on the statistical properties of
polymers is of growing interest to scientists and engineers
�12,13�. In the context of the cell, the important observation
is that dsDNA is always found in a state of confinement.
Namely, it occupies a volume which is considerably smaller
than the volume it assumes free in solution. Here we exam-
ine dsDNA confined to two dimensions. While not immedi-
ately of relevance to cell biology, this type of confinement
has been studied recently as an interesting polymer physics
problem. Experiments have probed dynamics and thermody-
namics of dsDNA confined to a mica surface �14� and the
surface of a lipid bilayer �15�. More generally, two-
dimensional confinement is emerging as an important experi-
mental method, as it allows for the use of fluorescence mi-
croscopy and atomic force microscopy to obtain images of
individual dsDNA molecules. For example, recent experi-
ments have made use of dsDNA adsorbed on treated mica
surfaces to study the effect of DNA-binding proteins on
dsDNA conformations �16�.

In this paper we study the effect of two-dimensional con-
finement on the entropic elasticity of a worm-like-chain
polymer. In particular, we compute the partition function for
the WLC model in the presence of an applied force when the
chain is restricted to two dimensions. This allows us to de-
rive an exact expression for the average end-to-end distance
of the polymer as a function of applied force, which is the
central result of this paper.

The paper is organized as follows. In Secs. II and III we
introduce the WLC model and derive an exact closed-form
expression for the tangent partition function and the force-
extension relation of a WLC polymer pulled at one end by a
constant force, in the limit of a large polymer length. In Sec.
IV we discuss the asymptotic form of our result in the limit
of strong and weak forces, and compare it to the approximate
force-extension relation in three dimensions. We also give a
simple algebraic approximation to the force-extension rela-
tion in two dimensions. In Sec. V we show that a minor
transformation converts the partition function of Sec. II into
the partition function of a semiflexible polymer in a nematic
field. We use this to calculate the nematic order parameter for
the polymer, as well as its relative extension in a strong
nematic field.

The results reported here should be of practical use in
stretching experiments where semiflexible polymers such as
DNA are confined to a surface. On the purely theoretical
side, they establish an interesting connection between the
elastic properties of two-dimensional semiflexible polymers
and Mathieu functions.

II. THE WORM-LIKE-CHAIN MODEL

The worm-like-chain model describes the polymer as an
elastic filament characterized by a rigidity parameter �,
which has dimensions of length. For a three-dimensional
polymer � is the persistence length, i.e., the decay length
associated with the tangent-tangent correlation function,
which for DNA under physiological conditions is about
50 nm. The energy of bending a small arc of length s of the
filament into a circular segment of radius R is given by
kBT�s /2R2, where kBT is the thermal energy �at room tem-
perature kBT=4 pNnm�. If we describe polymer conforma-
tions by a smooth continuous curve, the Hamiltonian of the
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WLC can be expressed as the integral of this segmental
bending energy over the entire polymer curve. Therefore,
when a polymer is tethered at one end and pulled with a
constant force F in the x̂ direction at the other, the Hamil-
tonian H can be written as:

H = �
0

L

ds��kBT

2
� dt̂

ds
�2

− F · t̂	 , �1�

where t̂ is the unit tangent vector to the polymer curve, and L
is the contour length of the polymer. In writing Eq. �1� we
have made use of the standard relation between the radius of
the curvature of a curve and the rate of change of its tangent
vector, 
dt̂ /ds
=1/R.

Since this polymer is represented by a curve, its partition
function is the sum of Boltzmann weights for all possible
curves, subject to the constraint of fixed polymer length L. In
terms of the tangent vector t�s� the partition function can be
written as a path integral,

Z�t̂f, t̂i;L� =� D�t̂�s��exp�− �
0

L

ds��

2
� dt̂

ds
�2

− f t̂ · x̂	� ,

�2�

where f =F/kBT is the reduced force with units of inverse
length. The dimensionless combination �f delineates re-
gimes of high ��f �1� and low force ��f �1�, which we take
up in Sec. IV.

Experiments on stretching polymers that involve attaching
the two ends of the polymer molecule to beads, constrain the
first and final tangent vectors, usually making them lie along
the direction of the force. This is indicated by specifying the
initial and final tangent vectors, t̂i and t̂i, explicitly in Eq. �2�.
In case the ends are free, we will need to integrate over these
tangent vectors to obtain the appropriate partition function.
This is the case, for example, when the polymer is dissolved
in a nematic solvent, as we shall see in Sec. V.

From the partition function Eq. �2� we calculate the aver-
age end-to-end extension of the polymer in the direction of
the force, X�. Namely, X� is the conformational average of
the end-to-end vector R=�0

Lds t̂ projected in the direction of
the applied force, i.e.,

X� =��
0

L

ds t̂ · x̂� . �3�

From Eq. �2� we conclude that

X� =
� ln Z

�f
. �4�

In two dimensions t̂= �cos � , sin ��, where ��s� is the polar
angle, and the partition function Z in Eq. �2� can be rewritten
as

Z�� f,�i;L� =� D���s��exp�− �
0

L

ds��

2
�d�

ds
�2

− f cos �	� ,

�5�

where � f and �i are now the final and initial tangent angles.
The calculation of Z�� f ,�i ;L� is made simple by the stan-
dard connection between the path integral and the
Schrödinger differential equation �17�

� �

�s
−

1

2�

�2

��2 − f cos ��Z��,�i;s� = 0 �s � 0� , �6�

subject to the initial condition

Z��,�i;0� = ��� − �i� . �7�

Since Eq. �6� is separable in s and �, we can express its
solutions in terms of the eigenfunctions Q��� and eigenval-
ues E of the corresponding eigenvalue equation,

� 1

2�

�2

��2 + f cos ��Q = − EQ . �8�

Note that the partition function, Z�� ,�i ;s�, is formally
equivalent to the path integral for a quantum rotor with mo-
ment of inertia � in an external field f , evolving in imaginary
time s �2�, or, equivalently, to a quantum pendulum in a
gravitational field �18�. The correspondence is actually very
intuitive, since thermal fluctuations of the tangent vector
along the backbone of the polymer can be regarded as the
time evolution of the quantum rotor in the external field.
Each polymer conformation hence represents one particular
time evolution of the quantum problem, in other words “the
path is the polymer” �19�. The procedure for computing
Z�� ,�i ;s� we have outlined above is thus formally equiva-
lent to obtaining the spectral representation of a quantum
propagator in terms of the eigenstates of the associated
Hamiltonian.

III. FORCE EXTENSION IN TWO DIMENSIONS

The eigenvalue equation, Eq. �8�, can be transformed into
the canonical Mathieu differential equation by the change of
variables �=	 /2−� /2. As � goes from 	 to −	 about the
direction of the force, � varies between 0 and 	. This trans-
formation yields,

�2Q

��2 + �p − 2q cos 2��Q = 0, �9�

with p=8E� and q=4f�. The solutions of this equation are
the Mathieu functions �20,21�. The Mathieu differential
equation always has a periodic solution and an aperiodic
solution �20�. Since rotation of tangent vectors by 2	 must
leave Q unchanged, we desire a solution that is periodic in �
with a period of 2	, or, equivalently, periodic in � with
period 	.

Solutions of Eq. �9� with a period of either 	 or 2	 are
called “basically periodic” in the Mathieu function literature.
A Mathieu function is basically periodic only for specific
values of the parameters p and q �20–22�. The value of p that
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makes the function basically periodic is called the “charac-
teristic value” of the Mathieu function, and is, in fact, a
continuous function of q �20–22�. For a given q there is a
countable set of such characteristic-value functions, usually
denoted as an�q� and bn�q�, n=0,1 ,2 , . . . . The functions
an�q� are associated with the even Mathieu functions
cen�an ,q ,��, while the functions bn�q� are associated with
the odd Mathieu functions sen�bn ,q ,��; ce and se stand for
cosine elliptic and sine elliptic, respectively �20–22�. Fur-
thermore, for q�0, the Mathieu characteristic functions sat-
isfy �22�

a0�q� 
 b1�q� 
 a1�q� 
 b2�q� 
 a2�q� 
 ¯ . �10�

We conclude that the periodicity of Q��� imposes the quan-
tization condition on the parameter p=8E�, which must be
from the countable set of Mathieu characteristic functions.

The periodicity of the Mathieu functions for different val-
ues of n can be deduced from their expansions in sine and
cosine series. There are four types of basically periodic ce
and se functions, and their expansions are

ce2n�a2n,q,�� = �
r=0

�

A2r
�2n� cos 2r� , �11�

ce2n+1�a2n+1,q,�� = �
r=0

�

A2r+1
�2n+1� cos�2r + 1�� , �12�

se2n+1�b2n+1,q,�� = �
r=0

�

B2r+1
�2n+1� sin�2r + 1�� , �13�

se2n+2�b2n+2,q,�� = �
r=0

�

B2r+2
�2n+2� sin�2r + 2�� . �14�

Note that the coefficients A and B are functions of q. Perusal
of the above equations shows that the class of functions that

have period 	 in �, are the ce2n and the se2n+2 functions. The
normalization convention for the Mathieu functions is �20�

�
0

	

ce2�an,q,��d� = �
0

	

se2�bn,q,��d� =
	

2
. �15�

The first few basically periodic Mathieu functions are plotted
in Fig. 1, while the corresponding characteristic functions are
plotted in Fig. 2.

With the eigenfunctions �ce2n and se2n+2� and the corre-
sponding eigenvalues �a2n and b2n+2� of Eq. �8� in hand, the
spectral representation of the partition function of the worm-
like chain is

FIG. 1. �Color online� Eigenfunctions ce0,
se2, and ce2 plotted for 4f�=1 and for � between
−	 and 	.

FIG. 2. Characteristic functions a0�q�, b2�q�, a2�q�, b4�q�, and
a4�q� plotted against q.

ELASTICITY OF SEMIFLEXIBLE POLYMERS IN TWO… PHYSICAL REVIEW E 72, 041918 �2005�

041918-3



Z��i,� f,L� = �
n=0

� � 2

	
ce2n�a2n,4f�,�i�ce2n�a2n,4f�,� f�

�exp�−
L

8�
a2n�4f���

+
2

	
se2n+2�b2n+2,4f�,�i�se2n+2�b2n+2,4f�,� f�

�exp�−
L

8�
b2n+2�4f���	 , �16�

where �i and � f specify the tangent vectors at the two ends
of the chain. To obtain the partition function with no con-
straints on the initial and final tangent vectors, we integrate
over all possible values of the initial and final angles. Using
the expansions, Eqs. �11�, �14�, and �15�, we get

Z�L� = �
n=0

�

2	�A0
�2n��2 exp�−

L

8�
a2n�4f��� . �17�

From the inequalities in Eq. �10� it follows that, for L large
compared to �, the above expansions for Z are dominated by
the term containing a0�4f�� in the exponential. Even for rela-
tively short polymers, this term is a good approximation to
the full partition function. Namely, as can be seen from Fig.
2, the difference between b2�4f�� or a2�4f�� and a0�4f�� is 4
at f =0 and increases in absolute value with increasing f .
Therefore, even for polymer length L�8�, the second expo-
nential in the expansion in Eqs. �16� and �17� is at least
e−4�0.02 times smaller than the first; the subsequent terms
are exponentially smaller.

It remains to consider the coefficients. In the case of Eq.
�16� the coefficients are products of Mathieu functions and
when � f ��i�0, which is a reasonable assumption for most
experiments, the coefficient of the first term is larger than
any of the subsequent ones. In the case of Eq. �17�, the
coefficients �A0

�2n��2 are complicated functions of the dimen-

sionless force q=4f�. However, all of them satisfy �A0
�2n��2


1 and they are all of the same order of magnitude when
q�1. When q=0, A0

�0�=1/�2, and all other coefficients are
zero �20�. We conclude that the approximation,

Z � c exp�−
L

8�
a0�4f��� , �18�

where c is the appropriate coefficient from either Eq. �16� or
Eq. �17�, depending on the boundary conditions, is justified
for polymer lengths L�8�.

We can now calculate the relative extension from Eq. �4�.
The coefficient of the exponential yields a correction which
is of order � /L and hence can be safely ignored in the long
chain limit. The resulting force extension relation is therefore
given by

X�
L

= −
1

8�

da0�4f��
df

= −
1

2

da0�q�
dq

, �19�

where q=4f�, as before.
The Mathieu characteristic functions are interesting in

themselves. So far, no exact expression for them is known in
terms of other functions, though good polynomial approxi-
mations are available for small and large q. They are usually
expressed as roots of an equation involving infinite contin-
ued fractions �20–22�. They can also be shown to be the
roots of an infinite tridiagonal determinant equation �21�.
Both these representations allow numerical calculation as
well as numerical differentiation by mathematical programs
like Mathematica �23�. Mathematica executes the desired
function as MATHIEUCHARACTERISTICA�R,Q�, which we use to
generate the plot of the relative extension as a function of the
applied force, shown in Fig. 3.

It is worth noting that the higher order moments of the
probability distribution of the end-to-end distance can be ob-
tained by successive differentiation of the partition function,

FIG. 3. Force extension curves
for semiflexible polymers. The
full line is the relative extension
X� /L plotted against the dimen-
sionless force, q=4F� /kBT using
the exact formula, Eq. �19�. The
dashed line is the interpolation
formula, Eq. �33�. For compari-
son, the force-extension curve in
three dimensions is plotted as a
dot-dashed line, using the ap-
proximate interpolation formula
described in Ref. �2�.
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Xn� =
1

Z
�nZ
�Fn . �20�

Having computed the exact expression for the force-
extension relation for a two-dimensional worm-like chain in
terms of Mathieu functions, in the next section we consider
the small and large force limits of Eq. �19�, which are readily
obtained using more elementary methods.

IV. LIMITS OF SMALL AND LARGE FORCE

In order to gain a better understanding of the derived
force-extension relation, Eq. �19�, we analyze it in the small
force �q=4f��1� and the large force �q�1� limits.

For small forces, we use the power series expansion �22�
of a0�q�,

a0�q� = −
q2

2
+

7q4

128
+ O�q6� . �21�

Therefore, to first order in q, the extension becomes

X�
L

=
1

2
q = 2f� . �22�

It is reassuring to find that a perturbation analysis of Eq.
�8�, in the limit of low force, yields the same result. If the
potential f cos � is treated as a perturbation, the unperturbed
equation describes a free particle on a ring,

1

2�

d2Qn

d�2 = − En
�0�Qn. �23�

The solutions of this equation are sine and cosine functions,
except for the E0

�0�=0 solution which is Q0=1/�2	. The ei-
genvalues are given by,

En
�0� =

n2

2�
, n = 0,1,2,… . �24�

The first order correction to the zero eigenvalue is zero. Us-
ing orthogonality properties of sine and cosine functions, we
obtain the second order correction

E0
�2� = − �f2. �25�

Using X� /L=−dE0 /df , which follows from Eq. �4�, and the
fact that in the long-chain limit Z�exp�−E0L�, we get Eq.
�22�.

Let us now consider the limit of large forces. We use the
asymptotic expansions given in Ref. �22�,

a0�q� � − 2q + 2q1/2 − 1
4 − 1

32q−1/2 + O�q−1� . �26�

This gives us, after ignoring terms of order q−1/2 and smaller,

X�
L

= 1 −
1

2�q
= 1 −

1

4�f�
. �27�

This formula can be derived independently by noting that
at high forces the polymer is highly extended in the direction
of the force, with only small transverse fluctuations, hence
the angle � that t̂ makes with x̂ is very small �2�. We can
therefore use the approximation

cos � � 1 − 1
2�2. �28�

This transforms the differential equation to be solved, Eq.
�8�, into a form that is equivalent to the Schrödinger equation
for a one-dimensional simple harmonic oscillator with =1
and angular frequency �=�f /�,

1

2�

�2Qn

��2 −
1

2
f�2Qn = − �En + f�Qn. �29�

The eigenfunctions Qn are Gaussian functions multiplied by
Hermite polynomials, and the eigenvalues are given by the
well-known expression,

En + f = �n + 1
2 ��f/� . �30�

Therefore the partition function can be written as,

Z�� f,�i;L� = �
n=0

�

Qn��i�Qn�� f�exp�− EnL� . �31�

Taking only the first term, in the limit of large L, and inte-
grating over all values of the initial and final angles, we get

Z � exp�− E0L� = exp��f − 1
2
�f/��L� . �32�

Using this result in Eq. �4� immediately gives Eq. �27�, as
expected.

In Fig. 3 we have plotted a comparison of the force-
extension curves from Eq. �19� and the interpolating formula
of Ref. �2�. The 2d curve is found to lie strictly above the 3d
curve at a nonzero force. This is expected by entropic argu-
ments since a three-dimensional polymer has larger entropy,
hence a larger force is needed to extend it by the same
amount. Note that in two dimensions DNA is highly
stretched even at relatively low forces.

It is also possible to write down an approximate formula
for the force extension of a two-dimensional polymer, which
tends to the exact force-extension relation in the two limits,
and is approximately true to within less than 10% in the
remaining regime �see Fig. 3�,

16f� = 6
X�
L

− 1 +
1

�1 −
X�
L
�2 . �33�

V. SEMIFLEXIBLE POLYMER IN A NEMATIC FIELD

Another way to stretch a polymer is to put it in an align-
ing field, such as that produced by a nematic liquid crystal.
In a recent experiment, semiflexible polymers were stretched
by dissolving them in the nematic phase of rodlike fd viruses
�24�. The nematic potential experienced by the polymer can
be written as �7,25�,

V

kBT
= − ��

0

L

ds��t̂ · n̂�2 − 1
2 � , �34�

where the square arises due to the reflection invariance of the
unit nematic director n̂, which we assume again is in the x̂
direction. The coupling �, between the nematic field and the
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polymer depends upon the order parameter of the nematic
liquid crystal in which the polymer is embedded. When the
liquid crystal undergoes a phase transition from the isotropic
to the nematic phase, � increases and the polymer stretches.
This mean-field form of the interaction ignores the fluctua-
tions in the nematic order parameter �26,27�.

With the help of the trigonometric identity, cos2 �− 1
2

= �cos 2�� /2, the potential in Eq. �34� becomes similar to that
of the constant pulling-force case, but with cos � replaced by
cos 2�. Following the treatment detailed in a previous sec-
tion, the partition function can again be expressed in a spec-
tral representation, using the eigen functions of the Mathieu
differential equation, which for this case is

�2Q

��2 + ��Q cos 2� = − 2E�Q . �35�

As before the ce2n and se2n+2 functions are the appropriate
eigenfunctions. In the large-L limit, the smallest eigenvalue
again dominates the spectral expansion and the partition
function is well approximated by,

Z = 2	�A0
�0��2 exp�−

L

2�
a0���

2
�� . �36�

The derivative of the free energy with respect to the coupling
� is now

S �
� ln Z

��
=��

0

L

ds�cos2 � − 1
2 �� , �37�

which is a measure of the degree of alignment of the polymer
with the external field. It can be seen that when the polymer
lies perfectly along the x̂ direction, then S=L /2, but when
the polymer conformation is completely random, S=0, since
cos2 ��= 1

2 . Therefore 2S /L is the nematic order parameter
of the polymer. The partition function Eq. �36� enables us to
calculate S /L as a function of the coupling strength �,

S

L
= −

1

4

da0�q�
dq

, �38�

where now q=�� /2, and we have ignored terms of order
� /L. Using the above result we can also obtain the approxi-
mate relative extension of the polymer in the direction of the
nematic director at high coupling �. Due to the reflection
invariance of the nematic director, the extension along that
direction is defined as,


X
� =���
0

L

ds cos ��� . �39�

When the coupling between the polymer and the field is large
the polymer conformation would consist of roughly straight
sections which have small fluctuations in the ŷ direction,
interspersed by hairpin bends. A simple thermodynamic ar-
gument, based on comparison of the energy cost of a hairpin
with the entropy of a hairpin, leads to the conclusion that the
typical length of the straight segments grows as the exponen-
tial of the square root of the coupling strength,

Lnem � 	�	��−1 exp�2�	��� . �40�

This is similar to the relation discussed in Ref. �27�.
For DNA, ��50 nm, therefore Lnem�50 �m when �
=0.05 nm−1, and Lnem�3 m when � is an order of magni-
tude larger. If the length of the polymer is smaller than Lnem,
hairpin bends are ruled out, and cos � does not change sign
along the polymer contour. Without loss of generality, we
can take it to be positive and remove the absolute value in
Eq. �39�. This allows us to write the following approximate
formula for the extension:

X� � ��
0

L

ds�1 − sin2 �� ���
0

L

ds�1 − 1
2 sin2 ��� .

�41�

By arguments similar to those made earlier for the polymer
under a constant force, we know that Eq. �36� is a good
approximation for the partition function when L /��1, and
we may use it to calculate the right-hand side of Eq. �41�.
The relative extension of the polymer along x̂ when
L
Lnem and L /��1 can therefore be expressed as,

X�
L

�
3

4
−

1

8

da0�q�
dq

, �42�

where q=�� /2. In the limit q�1, the relative extension has
the simple form, 1− 1

8
�q. These results can be used to esti-

mate � from experiments that measure the relative extension.
It should be noted that the exponential dependence of Lnem

on the square root of � implies that when ���1, Lnem could
be quite large, hence it would be easy to satisfy both
L
Lnem and L /��1. For example it was estimated above
that Lnem was as much as 50 �m for DNA when ���2.5. At
this value of �, Eq. �42� predicts that the molecule would
have extended to 87% of its contour length. While to our
knowledge, experimental estimates of � for DNA embedded
in a nematic liquid crystal do not exist at present, the experi-
ment of Ref. �24� measured values up to ��800��m�−1 for
wormlike micelles ���0.5 �m� in a solution of fd viruses.
The regime of validity of Eq. �42� is therefore expected to be
quite large. These arguments also imply that a dramatic
straightening of the polymer should take place as the liquid
crystal goes through an isotropic-nematic phase transition.
This indicates that there is considerable scope for using liq-
uid crystals for stretching DNA in the laboratory.

VI. CONCLUSION

At present several schemes exist to calculate the partition
function of the worm-like-chain model in both two and three
dimensions, to any degree of accuracy �2,5–7�. With the ex-
ception of Ref. �7�, they all use eigenfunction expansions to
obtain the partition function numerically. Reference �7� uses
a method to express the partition function in terms of infinite
continued fractions.

This multitude of approaches only underlines the rich
physics of the worm-like-chain model, and also hints at in-
teresting mathematical connections. In the present work, the
use of Mathieu functions to derive an exact partition function
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yielded a simple closed-form expression for the free energy
of the worm-like-chain in the long-chain limit. This allowed
us to calculate the force-extension relation in two dimensions
in terms of Mathieu characteristic functions. We also dis-
cussed the application of this result to the interaction be-
tween a semiflexible polymer and a nematic field, and de-
rived the nematic order parameter and average extension of
the polymer in a strong field. It should be noted that self-
avoidance, which is more important in two dimensions than
in three, has been ignored in our analysis. We address this

question, as well as stretching by a force that does not re-
main constant along the contour, such as that produced by an
electric field, in a future publication �28�.
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